alpha brooks Book Archive


Construction de Séries Discrètes p-adiques: Sur les Séries by Prof. Paul Gérardin (auth.)

By Prof. Paul Gérardin (auth.)

Show description

Read or Download Construction de Séries Discrètes p-adiques: Sur les Séries Discrètes non Ramifiées des Groupes Réductifs Déployés p-adiques PDF

Similar construction books

Italian Interiors

Italian inside layout is characterised for many years by means of a distinct innovation and risk-taking, not just on a classy point, but in addition within the use of recent fabrics and their blend. prepared Williger than in different places affects from paintings and layout to be addressed the following; the fashion designer ends blur the limits among those disciplines occasions provocative, occasionally subtly blurred.

Framing Floors, Walls and Ceilings (For Pros by Pros)

A solidly developed wooden body is the foremost to a well-built condominium. This selection of articles from "Fine Homebuilding" journal presents firsthand wisdom on the right way to body flooring, partitions and ceilings just like the execs. you will the right way to: body partitions swifter and straighterbuild stable, squeakless floorsSave time and cash with effective making plans, format and slicing techniquesand a lot moreSince it all started ebook in 1981,Fine Homebuilding" has been the journal of selection for developers and owners drawn to operating smarter, speedier and higher.

Additional info for Construction de Séries Discrètes p-adiques: Sur les Séries Discrètes non Ramifiées des Groupes Réductifs Déployés p-adiques

Sample text

D~finit une section w ~- d~signe la projection de composantes dans w s sur V= ~ ~• + sP § (w)s P § (w') = sP , w,w' - 9 En caract~ristique diff~rente de 2 , le lemme 9 implique l'isomorphisme 9~ . 9 . *~~ , ~ ~que pros 0 + s== s . En caract@ristique 2 , ce re@me lennne donne : P

12. : F(eZx) =~(z) F(x), si zek, F(s(v)(x) = ~ ( v ) F(x) ,si v~Q (~= I si la caract6ristique n'est pas 2) , F(tx) = a r ( t ) ~ ( t ) ~ fonction sur P S ,t(u)F(s(u)x)du , oG S t est la d6finie par : - en caract6ristique diff6rente de 2, si S ~,t , t~T (u) P~(t) = Q~'(t) C(t) (cf. h. I0 d)) : = Ir ( [u,u A(t) C(t) -I ] /2) ~P*Ce)(u) ; p - en caract6ristique 2, si P~(t) = Qe(t) C(t) : 52 S ,t (u) ~n prenant pour =~(uC(t)-IA'(t)~(uC(t)-1)-1~r([uC(t)-IA'(t),u~)~(s f la mesure de Dirac ~ l'orlgine de P on obtient un vecteur g~n~rateur de eette representation irr~ductible de DT par trans- lations ~ droite : %,e si zs (ezs (v)ts (u)) =q~(z) ~(v) ~ ( t ) v~Q, t 6T, u & P .

Iii) S i c e k , on d~finit un automorphisme d(c) de H par la formule s*(~)d(c) 0 c -I = T'(uv) S~(w (c 0 )) si W = au + v. I1 se relive darts Bo(H*) en : (D(c)f)(u) = ~(c -I u) , oG la transformation de Fourier est prise relativement U'- On a D(c) 2 = I. Ces deux assertions se v@rifient imm@diatement, comme la suivante : (iv) pour t # I , r(t) = t(~ t) dCcCt)) t(~t) o~ ~ t est le caract~re quadratique ~t(u) = ~(C(t) -I u) ~(A(t) C(t) -I u) -I u'(A(t) C(t) -I u 2) . 28 Avec les notations pr~c~dentes, l'automorphlsme RT,(t) = Rl~,~((t) = T~t) D(C(t)) T(~t) si t ~ I, R~(1) = I rel~ve r(t) dams Bo(H ).

Download PDF sample

Rated 4.85 of 5 – based on 38 votes